
IEEE Virtual Reality 2011

Introduction to
Networked Graphics

Anthony Steed

Part 4:
Application Support
Tools
Research Issues

  Application Support
  - Security, Protocol decisions
  - Persistence
  Tools
  - Middleware
  - Networked engines
  Research Issues
  - Scalable peer-to-peer, thin clients
  - Standards, etc.

IEEE Virtual Reality 2011

Introduction to
Networked Graphics

Application Support

  Application Support
  - Security, Protocol decisions
  - Persistence

SECURITY AND CHEATING

ServerX

Client
B

Client
A

Client
C

ClientC may be interfering with traffic

ClientA may be running
Compromised code

ClientB may be colluding
with ClientA

ServerX may have
exploitable bugs

Overview of Security Problems

Compromised Clients

  A pervasive problem in gaming
 E.G. notable problems with PSNet games after the PS3

master key was found allowing modified code on the
PS3

  For console gaming, hardware vendors try to lock
down the hardware so only verified programs can
run

  For PC gaming, various detection techniques such as
PunkBuster that detect malicious software on the PC
 Countermeasure are typically ahead of amateur cheats

but not professional cheats

Traffic Interference

  Once data is on the network it is public
  Various attacks

 Packet injection
 Packet hiding
 Latency asymmetry

  Some are mitigated by secure networks
 Some servers specifically support secur

Exploitable Server

  Users need to trust server, user hosted games are
not accepted for ranking tournaments or cash
games

  Server might be have a loophole
 E.G. Dupe bugs

  Denial of service attack

User Collusion

  A very difficult social situation to counter
 E.G. Chip dumping

  With this and all other security problems monitoring
of exceptions is important
 Players being too skillful
 Unlikely plays
 Game inventory inflation

SECURE NETWORKS

Virtual Private Networks

  Now very common for corporations and universities
  Three reasons

 Protection of internal services
 Giving a different “appearance” to the outside world

(e.g. ACM Digital Library)
 Security of access from anywhere (no need to trust local

network)

  The very easiest way to protect a NVE or NG is to
require someone go on a trusted VPN first
  Incurs latency/bandwidth overhead of routing all

information to the VPN access point first

ClientA

ServerX

ServerY

IP

IP

Virtual Private Networks (VPNs)

ClientA

ServerX

ServerY VPN
Gateway

IPSec

IP

IP

VPNs and IPSec

STREAMING

Different Uses of Streaming

  Streaming Protocols
  Streaming Animations
  Streaming Geometry (i.e. incremental download)

Streaming Protocols

  Audio/video transport is well developed on the
Internet

  However “well developed” means lots of competing
solutions

  Several plug and play libraries
  Real-Time Protocol an extension of UDP to support

streaming (though not all streaming protocols use it)
  Can get RTP compliant libraries which enables

streaming and receiving
 E.G. AccessGrid, some VoIP solutions

Bits 0
15

16
31

0-31 Version, config, flags Payload Type Sequence Number

32-63 Timestamp

64-95 Synchronisation Source (SSRC) Identifier

96+ Contributing Source (CSRC) Identifiers (Optional)

96+ Header Extensions (Optional)

96+ Payload Header

128+ Payload Data

Real-Time Protocol

RTP Payloads

Streaming Animations

  We have already looked at streaming positions and
orientations of objects

  However, a large class of objects are humans or
animals (or aliens) which deform

  Typically modeled from the graphics side as a
skeleton

  Animation is controlled by indicating which motion
the character is in and the keyframe in that motion

  Because motion is continuous (e.g. motion capture)
information might only need to be sent > 1s

Examples of Keyframe Animation

Streaming Geometry

  Many NVEs use very large worlds which need to be
downloaded because user modifiable or just vast

  System needs to determine which parts of the
models should be transferred

  Typically done in a priority order from the viewpoint
of the client, e.g. in increasing distance order

  Two ways of doing this
 Client-pull
 Server-push

Client Server

PositionX

Send AHigh,
BLow

Send BHigh,
CLow

PositionY

Position
Z

Send DLow, ELow

Server Push

Client Server

Fetch Index

Send Index

Send BHigh,
CLow

Fetch AHigh,
BLow

Send AHigh,
BLow

Fetch BHigh,
CLow

Client Pull

PERSISTENT AND TIERED SERVICES

Building a Persistent Service

  Many systems are long-lived and worth money
 Second Life
 World of Warcraft

  There needs to be a reliable persistent backend
  There needs to be separation of concerns in web-

service
  The infrastructure needs to be protected

  A lot of this is just based on good practice for big
web services

What Needs to be Persistent

  Player scores!
  In-game currency, in-game asset ownership
  Need proper “database-like” characteristics (ACID

principles)
 Thus use proper databases over SQL

  World description
 Can use database over SQL, probably more custom

databases

What Doesn’t Need to be Persistent

  Actual in-game state (usually)
 Users care about outcomes, not state
 No need to (e.g.) continuously store players locations to

a persistent database

  Commonly assumed that there is a “prototype”
world-state that the world can be reset to at any
point
  If the world crashes, just reload it
 This state might be a file on disk

Other Separation of Concerns

  Don’t expose database to the raw Internet
 Normal “tiered-service”-style approach

  Separate computational processes if required
 E.G. Separate physics from rest of game-play

  Sometimes: don’t even let clients connect direct to
game servers, use a gateway
 Allows TCP connections to be kept-alive
 Good point to rate-limit
 Fair sharing amongst users

Public Network Private Network

Master
Server

GatewayB

New
Process

PhysicsB

GameplayB Database

GatewayA

PhysicsA

GameplayA

Asset
Server

IEEE Virtual Reality 2011

Introduction to
Networked Graphics

Tools

  Tools
  - Middleware
  - Networked engines

  www.networkedgraphics.org has lots of
information about tools

ROLE OF MIDDLEWARE

Middleware

Network frameworks

Protocol implementations

Connection management

Operating system abstraction

Operating system

Manage whole setup

Implement protocol such as DIS

Manage multiple ports, streams

Cross platform support

E.G. “Socket” APIs

LOW-LEVEL SOCKET APIS

Address lookup functions
!

Function “Inverse” Other Helper Functions
getaddrinfo Int getnameinfo(const

struct sockaddr *sa,
socklen_t salen, char *host,
size_t hostlen, char *serv,
size_t servlen, int flags);

void freeaddrinfo(struct addrinfo
*ai);

const char *gai_strerror(int ecode)

gethostbyname struct hostent
*gethostbyaddr(const char
*addr, int len, int type);

struct hostent *gethostent(void);
struct hostent *gethostent_r(struct

hostent *result, char *buffer, int
buflen, int *h_errnop);

int sethostent(int stayopen);
int endhostent(void);

inet_addr char *inet_ntoa(struct
in_addr in)

inet_pton char *inet_ ntop(int af,
const void *src, char *dst,
size_t size);

Patterns of client and server socket use for
UDP and TCP
 Application Type

Client Server

So
ck

et
 T

yp
e

U
D

P
allocate socket
create server address
sendto

allocate socket
create local address
recvfrom

TC
P

allocate socket
create server address
connect
send/recv

allocate socket
create local address
bind
listen
accept
send/recv

!

DIS

Distributed Interactive Simulation

  DIS’s purpose is to inter-connect simulators, typically
vehicle simulators in military simulations

  DIS defines a packet, which is sent via UDP, called a
PDU (Protocol Data Unit)

  DIS often utilizes multicast which is a property of IP
where one IP packet can be sent to multiple
destinations
 This requires UDP-style sending (i.e. no guarantee of

receipt)
 Assumed that simulators send PDUs periodically, no

need for resend

Types of PDU

1 Entity State
2 Fire
3 Detonation
4 Collision
5 Service Request
6 Resupply Offer
7 Resupply Received
8 Resupply Cancel
9 Repair Complete
10 Repair Response
11 Create Entity
12 Remove Entity
13 Start/Resume
14 Stop/Freeze
15 Acknowledge
16 Action Request
17 Action Response
18 Data Query
19 Set Data
20 Data
21 Event Report
22 Comment
23 Electromagnetic
Emission

24 Designator
25 Transmitter
26 Signal
27 Receiver
28 IFF/ATC/NAVAIDS
29 Underwater Acoustic
30 Supplemental
Emission / Entity State
31 Intercom Signal
32 Intercom Control
33 Aggregate State
34 IsGroupOf
35 Transfer Control
36 IsPartOf
37 Minefield State
38 Minefield Query
39 Minefield Data
40 Minefield Response
NAK
41 Environmental Process
42 Gridded Data
43 Point Object State
44 Linear Object State

45 Areal Object State
46 TSPI
47 Appearance
48 Articulated Parts
49 LE Fire
50 LE Detonation
51 Create Entity-R
52 Remove Entity-R
53 Start/Resume-R
54 Stop/Freeze-R
55 Acknowledge-R
56 Action Request-R
57 Action Response-R
58 Data Query-R
59 Set Data-R
60 Data-R
61 Event Report-R
62 Comment-R
63 Record-R
64 Set Record-R
65 Record Query-R
66 Collision-Elastic
67 Entity State Update

!

Entity State PDU
Record # Record Type Brief Description

1 PDU Header Header information, including DIS version
2 Entity Identification An identifier for the entity that this PDU concerns.
3 Force Identification Which force (Other, Friendly, Opposing, Neutral)

4 Number of Articulation Parameters Related to sub-parts of entities
5 Entity Type Kind of entity, country, etc.
6 Alternate Entity Type Alternative for the above
7 Entity Linear Velocity Three 32 bit floats
8 Entity Location Three 64 bit floats
9 Entity Orientation Three 32 bit floats
10 Entity Appearance Paint, smoke, etc.
11 Dead Reckoning Parameters See below
12 Entity Marking Textual markings on entity
13 Capabilities Capabilities
14 Articulation Parameters Related to sub-parts of entities

!

X3D AND DIS

X3D in a Nutshell

Source Filter Filter Sink

Node Routes

X3D in a Nutshell

TIMER:
TimeSensor

ROTATOR:
Orientation
Interpolator

TRANS:
Transform

fraction_changed set_fraction

value_changed set_rotation

X3D in a Nutshell

GLOBAL_TIMER:
TimeSensor

GLOBAL_TRANS:
PositionInterpolator

BOID:
Transform

fraction_changed

set_fraction

value_changed

set_translation

BOID_FLAP:
Script

set_position

BOID_TIMER:
TimeSensor

set_loop

translation_changed

BOID_INTERP:
Coordinate
Interpolator

BOID_COORDS:
Coordinate

set_point

isFlapping

flapTime

startTime

fraction_changed

set_fraction

value_changed

X3D in a Nutshell

X3D, HAWKNL AND DIS

HawkNL

  A very simple library (Hawk Software) that isolates
operating system differences between UNIX and
Windows

Idea

  Take a boids simulator that simulates a flock of
boids

  Have this write one DIS packet to the network per
frame per boid

  Have X3D scene listen on the network for these
packets and move the boids around

X3D Node (Receiver)

EspduTransform {
 SFString [in,out] address
 SFInt32 [in,out] applicationID
 SFInt32 [in,out] entityID
 SFString [in,out] networkMode
 SFInt32 [in,out] port
 SFRotation [in,out] rotation
 SFVec3f [in,out] translation
 SFVec3f [in,out] linearVelocity
}

HawkNL Code Excerpts (Sender)

// Update a set of boids

void sendBoids(std::vector<Boid *> &boids)

{

 static NLulong timestamp=0;

 int i;

 unsigned int count;

 NLbyte buffer[1280]; /* Maximum size of a DIS PDU*/

 for (i=0; i< number_boids; i++)

 {

 <see next slide>

 }

}

HawkNL Code Excerpts (Sender)

 // PDU Header Field

 writeByte(buffer, count, 0x06); // Protocol Version Field

 writeByte(buffer, count, 0); // Exercise Identifier Field

 writeByte(buffer, count, 0x01); // Entity State PDU

 writeByte(buffer, count, 0x01); // Entity Information/Interaction

 writeLong(buffer, count, timestamp); // Time Stamp Field

 writeShort(buffer, count, 0x0090); // PDU Length Field

 writeShort(buffer, count, 0x0000); // Padding FIeld

 …

 //Entity Location Record, Note the rotation to DIS coordination

 writeDouble(buffer, count, boids[i]->pos[0]);

 writeDouble(buffer, count, boids[i]->pos[2]);

 writeDouble(buffer, count, -boids[i]->pos[1]);

 …

Xj3D Browser

OBJECT SHARING SYSTEMS

Object Sharing Systems

  Principle of object sharing systems is that the client
processes access locally stored objects (e.g.
instances of C++ classes)

  Any changes to these classes (i.e. changing instance
variables, creating new classes) is automatically
propagated to other collaborating clients

  Fits extremely well with the scene-graph paradigm
in graphics

  In our experience, it is an extremely easy way to
get started in network programming

Client A

Objects

Application

Network Object-Sharing

Client B

Objects

Application

Network Object-Sharing

Shared Objects

Client A

Objects

Application

Network Object-Sharing

Client B

Objects

Application

Network Object-Sharing

1

2

3

4

RAKNET

RakNet

  RakNet is a very popular middleware for NGs and
NVEs

  Free for non-commercial use, constantly updated
and used in many commercial projects

  Provides functionality at all levels of middleware
stack
 OS abstraction through to examples of full network

system management, lobbies for games, scoring, etc.

Object Sharing Considerations

  Need to get frequency of updates right: don’t send
an update every time an instance variable sends

  Objects are typically owned by the process that
created them: they share the fate of that process

  Can be client-server or peer to peer
  RakNet supports different configurations and

different styles – worthwhile to experiment!

Client A

ReplicaObjects
Application

ReplicaManager

1

2

Server

ReplicaObjects
Application

ReplicaManager
4

Client C

ReplicaObjects
Application

ReplicaManager

Client B

ReplicaObjects
Application

ReplicaManager

3

5

5

6

6

Client A

ReplicaObjects
Application

ReplicaManager

Server

ReplicaObjects
Application

ReplicaManager
1

Client C

ReplicaObjects
Application

ReplicaManager

Client B

ReplicaObjects
Application

ReplicaManager

2

2

3

3

IEEE Virtual Reality 2011

Introduction to
Networked Graphics

Research Issues

  Research Issues
  - Scalable peer-to-peer, thin clients
  - Standards, etc.

CLUSTERS

Clusters

  Cluster graphics is a particular concern of Virtual
Reality system designers

  One GPU card generates one or two video to get
maximum throughput, but we might need 4+
displays

  Need to synchronize graphics at two levels
 Synchronize graphics state on input to rendering
 Need to synchronize video output

Application

Scene Graph

Graphics Drivers

Modifies scene
graph

Render traversal

Application

Scene Graph

Graphics Drivers

Copy scene
graph

Synchronize
applications

Copy render
commands

Tools

  Copy render commands
 E.G. Chromium – stream OpenGL commands over TCP/

Ethernet, or other non-IP-based interconnects

  Copy scene graph
 E.G. OpenSG – stream an edit change list for a scene-

graph

  Synchronize applications
 E.G. VRJuggler – isolate all input in to one (or more) C

++ classes that can serialize themselves to the network,
stream the resulting serializations.

THIN CLIENTS

Thin Clients

  Might be considered “backwards” but graphics
architectures go in circles, so why not networked
graphics architectures

  Render the graphics on a server, stream the results
as video

  Recent consumer examples: OnLive, OToy, GaiKai
  However many OS vendors have such a functionality

for supporting thin clients over LANs

Operations

  Very small installable on client, client doesn’t need
to be high-powered (hence thin client)

  Stream to server your controller input
  Stream back video (e.g. 720p from OnLive)
  Server runs both game client and game server

(actual architectures not revealed)

Pros and Cons

  Pros
 Very small installable (e.g. only Flash for GaiKai)
 Thin client can be low power (e.g. Netbook)
 No need to download/install very large game assets

  Cons
 Latency
 Constant high bandwidth use compared to normal

game network traffic

ADAPTIVE NETWORKS

Practical Scalability

  Most deployed systems use a static partitioning of
the users on to servers or communication groups

  Pros
 A static partition is easy to maintain!
 Server can be customized for the expected function or

load

  Cons
 Users will congregate and occasionally protest by

trying to crash servers
 Average server load may be low

Adaptive Design

  Can make a better static partition by reallocating
servers infrequently depending on actual user
usage of the system

  Example: repartitioning a hypothesized service for
central London depending on pedestrian service

Other Strategies

  Active area of research: given a partitioning, how
to reallocate users or regions to servers as load
changes

  Local refinement of scope of server

PEER TO PEER

Peer to Peer

  A very live challenge: how can peer to peer
networks scale up to very large numbers

  Key to this is how to distribute awareness
management

  A secondary issue is how to “bootstrap”: how does a
user find their local users?

Larger Peer to Peer Context

  Enormous work in networking community on generic
large scale peer to peer databases

  Key technologies
 Distributed hash tables: a way of storing data sets

across multiple hosts but ensuring fast (O(logN)) access
to any data item

 Application-level routing: a mechanism for supporting
group peer to peer communication without any
underlying network support

Within a NVE Context

  Very active line of research
  For example, can one maintain a

set of closest peers with
something similar to a Voronoi
Tessellation?

  If peers can identify their
Voronoi Cell, they can identify
their neighbours.

  New clients can walk the cells to
get to find their true neighbours

STANDARDS

Potential Standards

  OpenSim project shows that its possible to construct
user-maintained “grids” of servers
 OpenSim implements the server functionality of Second

Life. It complements the open source version of the
viewer from Linden Labs

  NVEs in browsers will emerge from WebSockets/
WebGL

Open Standards

  X3D hasn’t reach critical mass, may be over-taken
by WebGL (though you can use X3D on WebGL)

  Notably different requirements than MPEG which
has networking components including streamed 3D
(based on VRML97)

  ?

SUMMARY

  Plenty of tools and options to support your NG or
NVE project

  Security is a big challenge if you can’t get your
users on to a VPN

  Other facilities require more infrastructure and are
very domain specific

  Plenty of research issues: thin clients being a wild
card at the moment

IEEE Virtual Reality 2011

Introduction to
Networked Graphics

Closing Remarks

Much More to Study

  Nothing like hands on experience to reveal why
Networked Graphics is a unique field

  As a field, needs to learn lessons from Internet
standards and web standards

  An NVE or NG has a complex set of requirements
and thus networking needs

  BUT lots of the technology is readily available in
middleware

