
IEEE Virtual Reality 2011

Introduction to
Networked Graphics

Anthony Steed

Part 3:
Latency
Scalability

  Latency
  - Mitigation strategies
  - Playout delays, local lag and dead reckoning
  Scalability
  - Management of awareness
  - Interest specification
  - Server partitioning

IEEE Virtual Reality 2011

Introduction to
Networked Graphics

Latency

  Latency
  - Mitigation strategies
  - Playout delays, local lag and dead reckoning

DUMB CLIENT AND LOCKSTEP
SYNCHRONISATION

Naïve (But Usable) Algorithms

  Most naïve way to ensure consistency is to allow
only one application to evolve state at once

  One application sends its state, the others wait to
receive, then one proceeds

  Is a usable protocol for slow simulations, e.g. games
 Not that slow – moves progress at the inter-client

latency

  Potentially useful in situations where clients use very
different code, and where clients are “un-
predictable”

Total Consistency (Alternating Execute)

T = t
Acknowledge every update
Propagation delay is 100ms

Client A Client B

Total Consistency (Alternating Execute)

Client A Client B

T = t + 50ms

Total Consistency (Alternating Execute)

Delta T

Client A Client B

T = t + 50 ms + 100 ms
Delta T (latency) is 100ms

Total Consistency (Alternating Execute)

T = t + 50ms + 100ms + 50ms

Client A Client B

Total Consistency (Alternating Execute)

T = t + 50ms + 100ms + 50ms + 100ms
T = t + 300ms

After 300ms Client A may move again!!!

Client A Client B

Delta T

Lock-Step (1)

  If all clients can deterministically on the input data

  Then a more useful form lock-step for NVEs & NGs
is that everyone exchange input, proceed once you
have all the information from other clients

  But for many simulations, each step is only
determined by user input, so can just communicate
input

DOOM (1) – iD Software

Doom ClientA

Read
Input

Rendering

Receive
Input

Simulate
Doom ClientB

Read
Input

Rendering

Receiv
e

Input

Simulate

Doom ClientC

Read
Input

Rendering

Receive
Input

Simulate

Lock-Step (2)

  If the simulation is complex or non-deterministic, use
a server to compute the state

  Clients are locked to the update rate of the server
  Note that own input is delayed

Quake ClientA

Read
Input

Rendering

Quake Server

Receive
Input

Simulate

Quake ClientB

Read
Input

Rendering

Mouse
Keyboard

Draw
Lists,
Game
State

Mouse
Keyboard

Draw
Lists,
Game
State

Quake (1 Pre-QuakeWorld) – iD Software

CONSERVATIVE SIMULATIONS

Conservative Simulations

  Lock-step are simple examples of conservative
simulations

  Usually, there is no side-effect of the event you
were waiting for

  E.G. in Quake, a lot of the time the other player’s
position is not important
 Why wait for events? Why not just proceed
 Answer is that you diverge IF you got shot

  However, for many simulations you can decouple
event sequences

ClientA

MessageI

Client=B
Time=11.1

MessageI+1

Client=C
Time=13.5

MessageI+2

Client=B
Time=13.6

MessageI+3

Client=C
Time=18.0

MessageI+4

Client=D
Time=18.2

ClientB

ClientC

ClientD

Message
Queue

In a conservative simulation, events can be played out, if the simulation can know
that another event cannot precede the ones it wants to play out. In this case the
first three messages can be played out, but the fourth and fifth cannot.

Notes

  Sufficient for many simulations
  Also known as pessimistic simulations
  Lots of theory about this: deadlocking, Chandy/

Misra/Bryant lookahead null message algorithm
  See: Fujimoto, R. (2000) Parallel and Distributed

Simulation Systems

TIME

Time

  Real-time synchronization needs a notion of time
  IF every event could be time stamped you could

accurately reconstruct the recent past
  In reality clocks on machines can not be

synchronized
  Can get close with Network Time Protocol
  Still not sufficient, applications tend to measure

inter-client latency using round-trip times
 

Virtual Time

  Sometimes it is sufficient to be able to order events
  Lamport’s Virtual Time is really an event counter
  An event can indicate which events caused it, and

which it depends on
  Thus, e.g. say EventExplode	 caused	 EventFire	
  If EventExplode	 says	 “EventFire	 caused	 me”	 then	
anyone	 who	 has	 EventExplode	 waits	 for	 EventFire	 	

  This can be implemented for simple situations with
just incremental counting (EventN+1	 is held until
EventN	 is played)	

ClientA	

ClientB	

ClientC	

EventFire

EventExplode

EventExplode	 is	 delay	 at	 ClientC	 un@l	 aAer	 	 EventFire	
A causal ordering scheme prevents ClientC from seeing an explosion before the fire
event that caused it. In this case, the timeline and the ticks on the timeline only
serve to indicate the passage of wall clock time, they don’t indicate time steps.

For Large Simulations

  Practically this can be achieved with vector clocks
  Each simulation keeps an event order of the events

it received, and then states which events it had
received when it generated an event

ClientA	

ClientB	

ClientC	

EventFire
(0,1,0)

EventExplode
(1,1,0)

EventFire
(2,1,1)

EventExplode
(2,1,0)

OPTIMISTIC ALGORITHMS

Optimistic Algorithms

  Conservative simulations tend to be slowed paced
  Optimistic algorithms play out events as soon as

possible
  Of course, this means that they can get things

wrong:
 They may receive an event that happened in the past
 To fix this they rollback by sending UNDO events
 For many simulations UNDO is easy (just move

something)

ClientA	 ClientB	
	

Lock
Door

Open
Door

ClientC	
	

Add
Zombies

Remove
Zombies

Close
Door

t0	

t1	

t2	

t3	

t4	

CLIENT PREDICT AHEAD

Predict Ahead

  A form of optimism: assume that you can predict
what a server (or another peer) is going to do with
your simulation

  Very commonly applied in games & simulations for
your own player/vehicle movement

  You assume that your control input (e.g. move
forward) is going to be accepted by the server

  If it isn’t, then you are moved back Note this isn’t
forwards in time but a prediction of the current
canonical state (which isn’t yet known!)

ClientA	 Server	

P0	 P1	

Move
P0 to P1

Move?
P1 to P2

Move?
P2 to P3

Move?
P3 to P4

Move?
P0 to P1

Move
P1 to P2

Move
P2 to P3

P2	 P1	

P3	 P2	

P4	 P3	

P0	 P1	

P2	 P1	

P3	 P2	

ClientA	 Server	

P0	 P1	

Move
P0 to P1

Move?
P1 to P2

Move?
P2 to P3

Move?
P0 to P1

FailMove
P1 to Q1

FailMove
P1 to Q1

P2	 P1	

P3	 P2	

Q1	

P0	 P1	

Q1	 P1	

P3	 P2	 Q1	

EXTRAPOLATION ALGORITHMS

Extrapolation Algorithms

  Because we “see” the historic events of remote
clients, can we predict further ahead (i.e. in to their
future!)

  This is most commonly done for position and velocity,
in which case it is known as dead-reckoning

  You know the position and velocity at a previous
time, so where should it be now?

  Two requirements:
 Extrapolation algorithm: how to predict?
 Convergence algorithm: what if you got it wrong?

Dead Reckoning: Extrapolation

  1st order model

  2nd order model

When to Send Updates

  Note that if this extrapolation is true you never
need to send another event!

  It will be wrong (diverge) if acceleration changes
  BUT you can wait until it diverges a little bit before

sending events
  The sender can calculate the results as if others

were interpolating (a ghost), and send an update
when the ghost and real position diverge

1st	 Order	 Model	

2nd	 Order	 Model	

a)	 Player	 model	 sending	
three	 	

updates	

b)	 Ghost	 model	 path	
without	
	 blending	

to	

t1	

t2	

c)	 Old	 ghost	 model	 and	 new	
ghost	

model	 at	 t1	

Convergence Algorithm

  When they do diverge, you don’t want the receiver
to just jump: smoothly interpolate back again

  This is hard:
 Can linearly interpolate between old and new position

over time, but vehicles don’t linearly interpolate (e.g.
would mean slipping

d)	 Blending	 between	 the	 old	 ghost	 and	
new	 ghost	 	

over	 several	 frames	

e)	 Ghost	 model	 path	 with	
blending	

Convergence Algorithm

  So you could steer the vehicle to correct its own
position
 This has frequency instabilities
 Deals badly with obstacles as the interpolated path

isn’t the same as the real path

a)	 Old	 ghost	 posi@on	 at	 t0,	 new	 ghost	 posi@on	
at	 t0	 and	 	

new	 ghost	 posi@on	 at	 t0+tΔ	

t0	
New	 ghost	

t0+tΔ	

New	 ghost	 t0	

Old	 ghost	 t0	

b)	 DoQed	 line	 shows	 the	 planned	 path	 to	
reach	 the	 target	 posi@on	 	 and	 direc@on	

a)	 Player	 model	 showing	 the	 @mings	 of	 dead-‐reckoning	
updates	 at	 the	 peaks	 of	 a	 periodic	 mo@on	

Update	 at	 t0	

Update	 at	 t1	

b)	 On	 arrival	 of	 an	 update	 message,	 the	 ghost	 model	
plans	 to	 converge	 the	 current	 ghost	 model	 posi@on	

with	 an	 extrapola@on	 of	 the	 received	 posi@on	

Correct	 player	 model	
path	

Convergence	
path	 Ghost	 model	 loca@on	 at	

t0	

Player	 model	 update	 at	
t0	

Extrapola@on	 of	 player	
model	

c)	 On	 the	 next	 update	 message	 the	 ghost	 model	 is	
out	 of	 phase	 with	 the	 player	 model.	 T	

to	

t1	

Player	 model	 update	
at	 t1	

a)	 Player	 model	 showing	
the	 object	 avoiding	 the	 wall	

Path	 of	 ghost	
model	 aAer	
update	 at	 t0	

b)	 AAer	 the	 update	 at	 t1	
the	 ghost	 model	 cannot	

converge	 	

INTERPOLATION, PLAYOUT DELAYS AND LOCAL
LAG

Interpolation

  Extrapolation is tricky, so why not just interpolate?
  Just delay all received information until there are

two messages, and interpolate between them
  Only adds delay equal to the time between sending

packets

Sender	 Receiver	

P1	

P2	

P3	

P4	

t1	

t2	

t3	

t4	

P0 P1 P2 P3

t0	 t1	 t2	 t3	

Interpolate	
P0→P1	

Playout	 delay	

Non-Linear Interpolation

  Need to consider several aspects
  Object movement is not linear, so could use quadric,

cubic, etc. by keeping three or more updates

Sender	 Receiver	

P1	

P2	

P3	

P4	

t1	

t2	

t3	

t4	

t5	

t6	

Playout Delays

  Note that jitter is not uniform, you need to be
conservative about how long to wait (if a packet is
late you have no more information to interpolate, so
the object freezes)

  NVEs and NGs thus sometimes use a playout delay
  Note that if you use a playout delay on the clients

own input, then all clients will see roughly the same
thing at the same time!

  A strongly related technique is bucket
synchronisation, pioneered in the seminal MiMaze

t0	 t1	 t2	 t3	

Interpolate	
P0→P1	

Maximum	 latency	

P0 P1 P2 P3

Playout	 delay	

Sender	

ClientA	

ClientB	

Playout Delay

t0	 t1	 t2	 t3	

Interval	 (Tα)	

EA1

Playout	 delay	 (TΔ)	

ClientA	

ClientB	

ClientC	

EC1 EC2

EB1 EB2

t4	

Bucket Synchronization

PERCEPTION FILTERS

Perception Filters

  In these techniques, the progress of time is altered
at different clients

  Clients choose to predict ahead or delay playout
depending on the meaning and their expected
interaction

ClientA	
ClientB	

CASE STUDY: BURNOUT ™ PARADISE

Burnout™ Paradise

Driving sub-state
(default)

Crashing sub-state

Player 1 Timeline

Player 2 Timeline
Free
Driving
State

Time

Race start
announceme
nt

Race start Awaiting
Results State
(non-
interactive)

Awards
State
(non-
interactive)

Race State

IEEE Virtual Reality 2011

Introduction to
Networked Graphics

Scalability

  Scalability
  - Management of awareness
  - Interest specification
  - Server partitioning

GOALS FOR SCALABILITY

Interest Specification

  A user is NOT an omniscient being
  A user is NOT interested in every event
  A client is NOT able to process everything

•  Just give each client enough to instil the user’s
illusion of an alternate reality
•  Interest: visibility, awareness, functional, …
•  Network and computational constraints

Awareness Categories

  Primary awareness
 Those users you are collaborating with
 Typically near by, typically highest bandwidth

available

  Secondary awareness
 Those users that you might see in the distance or nearby
 Can in principle interact with them within a few seconds

by movement

  Tertiary awareness
 All other users accessible from same system (e.g. by

teleporting to them)

System Goals

  Attempt to keep
 overall system utilization to a manageable level
 client inbound bandwidth at a manageable level
 client outbound bandwidth to a manageable level

  To do this
 Have clients discard received information
 Have the system manage awareness
 Have clients generate information at different levels of

detail

Managing Awareness

  A complex distributed problem
  Users’ expressions of interest in receiving

information balanced against system’s and other
clients’ capabilities

  Awareness scheme is partly dependent on the
networking architecture, but most awareness
management schemes can be applied to different
architectures

  Spatial layout is the primary moderating factor on
awareness

Message
Filtering Application

Filter on
Receive

Network
Routing

Application

Filter on
Send

Network
Routing

Message
Routing

Network
Routing

Message
Routing

Network
Routing

Network
Routing

SPATIAL PARTITIONING

Spatial Partitions

  Global Partitions
 Static Grid
 Hierarchical Grid
 Locales

  Local Partitions
 Aura
 Visibility
 Nearest Neighbours

Global Partitions: Static Cells

•  1 Cell = 1 Group

•  Hexagon regular shape

•  Tied into the grid – static

•  Send current cell

•  Receive neighbours

•  Any architecture (distributed)

Global Partitions: Hierarchal Grid

•  1 Cell = 1 Group

•  Square cells

•  Send current cell

•  Receive current cell

•  Any architecture (distributed)

•  Exceeds threshold, expand

Threshold = 5

Global Partitions: Irregular

Global Partitions: Locales

•  1 locale = 1 group

•  Locale is arbitrary shape

•  Locale placement is static

•  Associated transform matrix

•  Any architecture (distributed)

Global Partitions: Locales

•  1 locale = 1 group

•  Locale is arbitrary shape

•  Locale placement is static

•  Associated transform matrix

•  Any architecture (distributed)

Global Partitions: Locales

•  1 locale = 1 group

•  Locale is arbitrary shape

•  Locale placement is static

•  Associated transform matrix

•  Any architecture (distributed)

Local Partitions: Aura, Focus, Nimbus

  Instead of grouping users by a global cell, group by
their own interest overlap

  Aura, Focus, Nimbus (Spatial Model) pioneered in
the MASSIVE and DIVE systems

Aura

Visual
Focus

Visual
Nimbus

Audio
Focus

Audio
Nimbus

Local Partitions: Auras

UserA UserB

Local Partitions: Auras

Local Partitions: Visibility

B

•  Line of sight

•  Entity visible = group

•  Client/Server

A

C

Local Partitions: Visibility

  In real environment our focus is most severely limited
by the physical environment: we can’t see around
walls, we can’t hear (or see) over long distances

A B C

D E F

G H I

A

B
C

F
E

D

G H I

Cells Portals

Local Partitions: Visibility

A B C D E F G H I

- 1 1 0 1 0 0 0 0 A

- 1 1 1 1 0 0 0 B

- 0 1 1 0 0 0 C

- 1 0 1 1 0 D

- 0 1 0 0 E
- 0 0 0 F

- 1 1 G

- 1 H

- I

Full PVS

A B C

D E F

G H I

PVSA

Spatial Partitions: Visibility

A B C

D E F

G H I

User1

User2 User4

User3

A B C

D E F

G H I

User1

User2 User4

User3

Spatial Partitions: Visibility

Spatial Partitions: Visibility

Local Partitions: Nearest Neighbours

•  1 group = quorum

•  Computational/Network
constraints

•  Client/Server

Local Partitions: Nearest Neighbours

•  1 group = quorum

•  Computational/Network
constraints

•  Client/Server

MANAGING HANDOVER

SERVER INTERACTIONS

Server Interactions

  Server system introduce two big problems
  How do two proximate users on adjacent servers

interact?
 Sometimes just not allowed – long twisty roads between

server regions where you never meet other players

  How do you actually hand over a player from one
server to another
 Need to move responsibility for interaction
 Possibilities needs new network connections

UserA UserB

ZoneA ZoneB
MirrorAB MirrorBA

View on ServerA View on ServerB

Proxy
of
UserA

MULTI-SERVER MANAGEMENT

Practical Systems

  A system such as Second Life™ utilizes a regular
grid layout with one server per region
 Regions are laid out on a mostly-contiguous map

  However is a game session, far too many players
want to access a specific game content

  A game shard is a complete copy of a system, you
connect to one system and see one player cohort

  A game instance is similar, but is replication of a
particular area (e.g. dungeon) to support one group
of players within a cohort. Often created on
demand.

ServerC

ServerC

Master
Server

ServerA

New
Process

1 2

3

ServerB

Game Shards

ServerD

ServerC

Master
Server

ServerA

New
Process

1 2

3
ServerB

Game Regions

ServerC ServerC ServerC

Master
Server

ServerA

1 2

3
ServerB

ServerD

New
Process 4

ServerC

Game Regions & Instances

SUMMARY

  Latency and dealing with time is a huge issue in
NVEs and NGs with a variety of solutions
 Conservative solutions v. rollback v.playout delays
 Choice depends on game play

  Scalability depends on a choice of awareness
mechanism
 Requires a logical scalability mechanism
 Partitioning over users

  Part 4 will look at application support, tools and
future research issues

