Introduction to Networked Graphics

Part 5 of 5: Application Support & Recent Research

Overview

- Goal:
 - To explain some other application issues and areas of recent research.
- Topics:
 - Security and secure networks
 - Streaming
 - Cluster graphics
 - Thin clients
 - Peer to peer

Sponsored by ACM SIGGRAPH

Compromised Clients

- A pervasive problem in gaming
 - E.G. notable problems with PSNet games after the PS3 master key was found allowing modified code on the PS3
- For console gaming, hardware vendors try to lock down the hardware so only verified programs can run
- For PC gaming, various detection techniques such as PunkBuster that detect malicious software
 - Countermeasure are typically ahead of amateur cheats but not professional cheats

Traffic Interference

- Once data is on the network it is public
- Various attacks
 - Packet injection
 - Packet hiding
 - Latency asymmetry
- Some are mitigated by secure networks
 - Some servers specifically support secur

- Users need to trust server, user hosted games are not accepted for ranking tournaments or cash games
- Server might be have a loophole
 - E.G. Dupe bugs
- Denial of service attack

User Collusion

- A very difficult social situation to counter
 - E.G. Chip dumping
- With this and all other security problems *monitoring* of exceptions is important
 - Players being too skillful
 - Unlikely plays
 - Game inventory inflation

Virtual Private Networks

- Now very common for corporations and universities
- Three reasons
 - Protection of internal services
 - Giving a different "appearance" to the outside world (e.g. ACM Digital Library)
 - Security of access from anywhere (no need to trust local network)
- The very easiest way to protect a NVE or NG is to require someone go on a trusted VPN first
 - Incurs latency/bandwidth overhead of routing all information to the VPN access point first

Virtual Private Networks (VPNs)

Sponsored by ACM SIGGRAPH

VPNs and IPSec

Sponsored by ACM SIGGRAPH

Different Uses of Streaming

- Streaming Protocols
- Streaming Animations
- Streaming Geometry (i.e. incremental download)

Streaming Protocols

- Audio/video transport is well developed on the Internet
- However "well developed" means lots of competing solutions
- Several plug and play libraries
- Real-Time Protocol an extension of UDP to support streaming (though not all streaming protocols use it)
- Can get RTP compliant libraries which enables streaming and receiving
 - E.G. AccessGrid, some VoIP solutions

Real-Time Protocol

Bits	0		16		
	15		31		
0-31	Version, config, flags	Payload Type	Sequence Number		
32-63	Timestamp				
64-95	Synchronisation Source (SSRC) Identifier				
96+	Contributing Source (CSRC) Identifiers (Optional)				
96+	Header Extensions (Optional)				
96+	Payload Header				
128+	Payload Data				

Table 13.1 Some of the Potential RTP Payloads

Description	Specification (RFC)	Type Num	Format
ITU G.711 μ-law audio	1890	0	AUDIO/PCMU
GSM full-rate audio	1890	3	AUDIO/GSM
ITU G.711 A-law audio	1890	8	AUDIO/PCMA
PureVoice QCELP audio	2658	12	AUDIO/QCELP
MPEG Audio (e.g. MP3)	2250	14	AUDIO/MPA
Motion JPEG video	2435	26	VIDEO/JPEG
ITU H.261 video	2032	31	VIDEO/H261
MPEG I/II video	2250	32	VIDEO/MPV

Streaming Animations

- We have already looked at streaming positions and orientations of objects
- However, a large class of objects are humans or animals (or aliens) which deform
- Typically modeled from the graphics side as a skeleton
- Animation is controlled by indicating which *motion* the character is in and the *keyframe* in that motion
- Because motion is continuous (e.g. motion capture) information might only need to be sent > 1s

Examples of Keyframe Animation

www.SIGGRAPH.org/ASIA2011

Sponsored by ACM SIGGRAPH

Streaming Geometry

- Many NVEs use very large worlds which need to be downloaded because user modifiable or just vast
- System needs to determine which parts of the models should be transferred
- Typically done in a *priority order* from the viewpoint of the client, e.g. in increasing distance order
- Two ways of doing this
 - Client-pull
 - Server-push

Server Push

Client Pull

- Cluster graphics is a particular concern of Virtual Reality system designers
- One GPU card generates one or two video to get maximum throughput, but we might need 4+ displays
- Need to synchronize graphics at two levels
 - Synchronize graphics state on input to rendering
 - Need to synchronize video output

Layers of Sharing Graphics

Tools

- Copy render commands
 - E.G. Chromium stream OpenGL commands over TCP/Ethernet, or other non-IP-based interconnects
- Copy scene graph
 - E.G. OpenSG stream an edit change list for a scene-graph
- Synchronize applications
 - E.G. VRJuggler isolate all input in to one (or more) C++ classes that can serialize themselves to the network, stream the resulting serializations.

Thin Clients

- Might be considered "backwards" but graphics architectures go in circles, so why not networked graphics architectures
- Render the graphics on a server, stream the results as video
- Recent consumer examples: OnLive, OToy, GaiKai
- However many OS vendors have such a functionality for supporting thin clients over LANs

Thin Clients

- Very small installable on client, client doesn't need to be high-powered (hence thin client)
- Stream to server your controller input
- Stream back video (e.g. 720p from OnLive)
- Server runs both game client and game server (actual architectures not revealed)

Thin Client Pros and Cons

- Pros
 - Very small installable (e.g. only Flash for GaiKai)
 - Thin client can be low power (e.g. Netbook)
 - No need to download/install very large game assets
- Cons
 - Latency
 - Constant high bandwidth use compared to normal game network traffic

- A live challenge: how can peer to peer networks scale up to very large numbers
- Key to this is how to distribute awareness management
- A secondary issue is how to "bootstrap": how does a user find their local users?

Larger Peer to Peer Context

- Enormous work in networking community on generic large scale peer to peer databases
- Key technologies
 - Distributed hash tables: a way of storing data sets across multiple hosts but ensuring fast (O(logN)) access to any data item
 - Application-level routing: a mechanism for supporting group peer to peer communication without any underlying network support

Within a NVE Context

- Very active line of research
- For example, can one maintain a set of closest peers with something similar to a Voronoi Tessellation?
- If peers can identify their Voronoi Cell, they can identify their neighbours.
- New clients can walk the cells to get to find their true neighbours

- Plenty of tools and options to support your NG or NVE project
- Security is a big challenge if you can't get your users on to a VPN
- Other facilities require more infrastructure and are very domain specific
- Plenty of research issues: thin clients being a wild card at the moment

