Introduction to Networked Graphics

Part 4 of 5: Bandwidth Management & Scalability

Overview

- Goal:
 - To explain how bandwidth limits cause scalability problems. In non-trivial environments its simply not possible to communicate all states to all parties.
- Topics:
 - Management of awareness
 - Interest specification
 - Server partitioning

Interest Specification

- Users are not omniscient beings and thus they can't be interested in every event in a non-trivial scene
 - Plausibility needs to be maintained
- Systems thus model the user's awareness so that they can only deliver a conservative approximation to the necessary events so that the user's illusion of a shared virtual environment is maintained

Awareness Categories

- Primary awareness
 - Those users you are collaborating with
 - Typically near by, typically highest bandwidth available
- Secondary awareness
 - Those users that you might see in the distance
 - Can in principle interact with them within a few seconds by movement
- Tertiary awareness
 - All other users accessible from same system (e.g. by teleporting to them)

System Goals

- Attempt to keep
 - overall system utilization to a manageable level
 - client inbound bandwidth at a manageable level
 - client outbound bandwidth to a manageable level
- To do this
 - Have clients discard received information
 - Have the system manage awareness
 - Have clients generate information at different levels of detail

Managing Awareness

- A complex distributed problem
- Users' expressions of interest in receiving information balanced against system's and other clients' capabilities
- Awareness scheme is partly dependent on the networking architecture, but most awareness management schemes can be applied to different architectures
- Spatial layout is the primary moderating factor on awareness

Filtering traffic

Spatial Partitions

- Global Partitions
 - Static Grid
 - Hierarchical Grid
 - Locales
- Local Partitions
 - Aura / nearest neighbours
 - Visibility

Global Partitions: Static Cells

- A static partition in to regular cells
- Players only communicate with other players in the same cell

Global Partitions: Static Cells

- A slightly more sophisticated partitioning
- Each player receives information from 7 nearest cells
- As they move they change the cells they receive from
- No longer abrupt changes across borders

Global Partitions: Irregular

Two irregular partitionings

Spatial Partitions: Auras / Nearest Neighbours

- Aura focus nimbus model from Benford, Greenhalgh, et al.
- Network connections are set up if users are close to each other and "looking" or "listening" in their direction.

Spatial Partitions: Local SIGGRAPHASIA2011 HONG KONG Visibility

Spatial Partitions: Local Visibility

Practical Systems

- A system such as Second Life[™] utilizes a regular grid layout with one server per region
 - Regions are laid out on a mostly-contiguous map
- However is a game session, far too many players
 want to access a specific game content
- A game *shard* is a complete copy of a system, you connect to one system and see one player cohort
- A game *instance* is similar, but is replication of a particular area (e.g. dungeon) to support one group of players within a cohort. Often created on demand.

Game Shards

Game Regions

Game Regions & Instances

- Scalability depends on a choice of awareness mechanism
 - Requires a logical scalability mechanism based on what is most relevant for the users
 - Needs to consider bottlenecks at several points
 - Most common strategy is to partitioning users