
Introduction to Networked
Graphics

• Part 3 of 5: Latency

Overview

• Goal:
• To explain how latency impacts the decisions of

how to ensure consistency. Latency implies that
clients cannot all act the same way because they
don’t have consistent information.

• Topics:

• Synchronising state with latent communications
• Playout delays, local lag
• Extrapolation and dead reckoning

Naïve (But Usable)
Algorithms

• Most naïve way to ensure consistency is to allow
only one application to evolve state at once

• One application sends its state, the others wait to
receive, then one proceeds

• Is a usable protocol for slow simulations, e.g. games
• Not that slow – moves progress at the inter-client

latency
• Potentially useful in situations where clients use

very different code, and where clients are “un-
predictable”

Lock-Step (1)

• If all clients can deterministically on the input data

• Then a more useful form lock-step for NVEs & NGs
is that everyone exchange input, proceed once you
have all the information from other clients

• But for many simulations, each step is only
determined by user input, so can just communicate
input

DOOM 1 – iD Software
 Doom ClientA

Read
Input

Rendering

Receive
Input

Simulate
Doom ClientB

Read
Input

Rendering

Receiv
e

Input

Simulate

Doom ClientC

Read
Input

Rendering

Receive
Input

Simulate

Lock-Step (2)

• If the simulation is complex or non-deterministic,
use a server to compute the state

• Clients are locked to the update rate of the server
• Note that own input is delayed

Quake ClientA

Read
Input

Rendering

Quake Server

Receive
Input

Simulate

Quake ClientB

Read
Input

Rendering

Mouse
Keyboard

Draw
Lists,
Game
State

Mouse
Keyboard

Draw
Lists,
Game
State

Quake 1
(Pre-QuakeWorld)

Presenter
Presentation Notes
Figure 11.5

Optimistic Algorithms

• Conservative simulations tend to be slowed paced
• Optimistic algorithms play out events as soon as

possible
• Of course, this means that they can get things

wrong:
• They may receive an event that happened in the

past
• To fix this they rollback by sending UNDO events
• For many simulations UNDO is easy (just move

something)

ClientA ClientB

Lock
Door

Open
Door

ClientC

Add
Zombies

Remove
Zombies

Close
Door

t0

t1

t2

t3

t4

Presenter
Presentation Notes
Here two clients make events very close in time. ClientB doesn’t know that ClientA locked the door, so opens it. ClientC see the open door and releases zombies. However the temporally correct order would prevent the door opening. Thus ClientB has to undo its command. This then forces ClientC to do an undo too.

Client Predict Ahead

• A form of optimism: assume that you can predict
what a server (or another peer) is going to do with
your simulation

• Very commonly applied in games & simulations for
your own player/vehicle movement

• You assume that your control input (e.g. move
forward) is going to be accepted by the server

• If it isn’t, then you are moved back Note this isn’t
forwards in time but a prediction of the current
canonical state (which isn’t yet known!)

ClientA Server

P0 P1

Move
P0 to P1

Move?
P1 to P2

Move?
P2 to P3

Move?
P3 to P4

Move?
P0 to P1

Move
P1 to P2

Move
P2 to P3

P2 P1

P3 P2

P4 P3

P0 P1

P2 P1

P3 P2

Presenter
Presentation Notes
Figure 11.11

ClientA Server

P0 P1

Move
P0 to P1

Move?
P1 to P2

Move?
P2 to P3

Move?
P0 to P1

FailMove
P1 to Q1

FailMove
P1 to Q1

P2 P1

P3 P2

Q1

P0 P1

Q1 P1

P3 P2 Q1

Presenter
Presentation Notes
Figure 11.12

Extrapolation Algorithms

• Because we “see” the historic events of remote
clients, can we predict further ahead (i.e. in to their
future!)

• This is most commonly done for position and
velocity, in which case it is known as dead-
reckoning

• You know the position and velocity at a previous
time, so where should it be now?

• Two requirements:
• Extrapolation algorithm: how to predict?
• Convergence algorithm: what if you got it wrong?

Dead Reckoning:
Extrapolation

• 1st order model

• 2nd order model

When to Send Updates

• Note that if this extrapolation is true you never need
to send another event!

• It will be wrong (diverge) if acceleration changes
• BUT you can wait until it diverges a little bit before

sending events
• The sender can calculate the results as if others

were interpolating (a ghost), and send an update
when the ghost and real position diverge

1st Order Model

2nd Order Model

Convergence Algorithm

• When they do diverge, you don’t want the receiver to
just jump: smoothly interpolate back again

• This is hard:
• Can linearly interpolate between old and new

position over time, but vehicles don’t linearly
interpolate (e.g. could mean slipping or even
going through obstacles)

 Blending between the old ghost and
new ghost

over several frames

Convergence Appears as
Sliding Motion

Interpolation

• Extrapolation is tricky, so why not just interpolate?
• Just delay all received information until there are

two messages, and interpolate between them
• Only adds delay equal to the time between sending

packets

Interpolation & Playout
Delays

• Extrapolation is tricky, so why not just interpolate?
• Just delay all received information until there are

two messages, and interpolate between them
• Note that jitter is not uniform, you need to be

conservative about how long to wait (if a packet is
late you have no more information to interpolate, so
the object freezes)

• NVEs and NGs thus sometimes use a playout delay
• Note that if you use a playout delay on the clients

own input, then all clients will see roughly the same
thing at the same time!

t0 t1 t2 t3

Interpolate
P0→P1

Maximum latency

P0 P1 P2 P3

Playout delay

Sender

ClientA

ClientB

Playout Delay

Sender Receiver

P1

P2

P3

P4

t1

t2

t3

t4

Presenter
Presentation Notes
Using a playout delay and linear interpolation, here we see that the receiver can interpolate the position of the sender’s entity. From t2 to t3 the receiver is moving the entity from p1 to p2. In practice the playout delay might be longer to accommodate more jitter or latency.

Non-Linear Interpolation

• Need to consider several aspects
• Object movement is not linear, so could use quadric,

cubic, etc. by keeping three or more updates
• Note that this causes more delay
• However, if update rate is fast, the trade off is that

movement is apparently a lot smoother

Sender Receiver

P1

P2

P3

P4

t1

t2

t3

t4

t5

t6

Non-Linear Interpolation

Presenter
Presentation Notes
Here we use quadric interpolation. You need to have three points in order to interpolate. Thust at t4 the receiver can start to interpolate between the positions received from sender at t1 and t2. When they reach t5, they will be showing the position of the sender at t2

Summary

• You can’t beat latency, so you need to deal with the
consequences

• Over LAN you can just do a lock-step or simple
synchronisation scheme
• Server can calculate all behaviours

• Over a WAN you can’t live with the implied delays,
so its comes to use optimistic schemes

• Alongside that, one might delay playouts and
interpolate historic events to ensure that every site
see a similar state at the same time.

	Introduction to Networked Graphics
	Overview
	Naïve (But Usable) Algorithms
	Lock-Step (1)
	DOOM 1 – iD Software
	Lock-Step (2)
	Quake 1�(Pre-QuakeWorld)
	Optimistic Algorithms
	Slide Number 9
	Client Predict Ahead
	Slide Number 11
	Slide Number 12
	Extrapolation Algorithms
	Dead Reckoning: Extrapolation
	When to Send Updates
	Slide Number 16
	Slide Number 17
	Convergence Algorithm
	Convergence Appears as Sliding Motion
	Interpolation
	Interpolation & Playout Delays
	Playout Delay
	Slide Number 23
	Non-Linear Interpolation
	Non-Linear Interpolation
	Summary

